

Version 2.0

Modellers’ Guide

© 2003, 2004 Metamaxim Ltd

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 2 of 64

ALL RIGHTS RESERVED. NO PARTS OF THIS WORK MAY BE REPRODUCED IN ANY FORM
OR BY ANY MEANS - GRAPHIC, ELECTRONIC, OR MECHANICAL, INCLUDING

PHOTOCOPYING, RECORDING, TAPING, OR INFORMATION STORAGE AND RETRIEVAL
SYSTEMS - WITHOUT THE WRITTEN PERMISSION OF THE PUBLISHER. PRODUCTS THAT

ARE REFERRED TO IN THIS DOCUMENT MAY BE EITHER TRADEMARKS AND/OR
REGISTERED TRADEMARKS OF THE RESPECTIVE OWNERS. THE PUBLISHER AND THE

AUTHOR MAKE NO CLAIM TO THESE TRADEMARKS.

WHILE EVERY PRECAUTION HAS BEEN TAKEN IN THE PREPARATION OF THIS
DOCUMENT, THE PUBLISHER AND THE AUTHOR ASSUME NO RESPONSIBILITY FOR

ERRORS OR OMISSIONS, OR FOR DAMAGES RESULTING FROM THE USE OF
INFORMATION CONTAINED IN THIS DOCUMENT OR FROM THE USE OF PROGRAMS AND
SOURCE CODE THAT MAY ACCOMPANY IT. IN NO EVENT SHALL THE PUBLISHER AND

THE AUTHOR BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL
DAMAGE CAUSED OR ALLEGED TO HAVE BEEN CAUSED DIRECTLY OR INDIRECTLY BY

THIS DOCUMENT.

PERMISSION IS HEREBY GRANTED TO PRINT THE ELECTRONIC FORM OF THIS
DOCUMENT (PDF FILE) FOR THE SOLE PURPOSE OF USING IT TO WORK WITH THE

MODELSCOPE SOFTWARE OBTAINED UNDER SEPARATE LICENCE AGREEMENT.
© 2003, 2004 METAMAXIM LTD.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 3 of 64

CONTENTS

1 INTRODUCTION .. 6
1.1 MODELSCOPE.. 6

2 HOW TO USE THIS GUIDE.. 7
2.1 PURPOSE ... 7
2.2 ORGANISATION OF THIS GUIDE ... 7
2.3 BANK EXAMPLES .. 7

3 FUNDAMENTALS .. 8
3.1 BEHAVIOUR MODELLING .. 8
3.2 OBJECTS, EVENTS AND STATES... 8
3.3 STATE TRANSITION DIAGRAMS... 8

4 WORKED EXAMPLE ...10
4.1 BANK1 ...10

4.1.1 ModelScope ...10
4.1.2 Objects...10
4.1.3 Object Attributes..11
4.1.4 Events ..12
4.1.5 Event Transition Correspondence ...12
4.1.6 Event Processing Cycle ...13
4.1.7 Name Co-incidence Data Transfer ..14
4.1.8 Event Processing Callbacks ..15
4.1.9 Actors...16

4.2 BANK2 ...17
4.2.1 Events in Context ...17
4.2.2 Objects and Behaviours...17
4.2.3 Derived Attributes..20
4.2.4 Derived States..20

4.3 BANK3 ...22
4.3.1 Behaviour Re-use...22
4.3.2 Post-State Constraints ...23
4.3.3 Generic Events...25
4.3.4 Event Subscripts ..28

4.4 BANK4 ...31
4.4.1 More on Re-use..31
4.4.2 Event Handling Callbacks ...33
4.4.3 Attribute Handling Callbacks ..36

4.5 BANK5 ...37
4.5.1 Domain Rules and Business Rules...37
4.5.2 Business Rule Modelling ...38
4.5.3 Allowed Behaviour ..39
4.5.4 Post-State Constraints in Business Rules ..40
4.5.5 Desired Behaviour...40

5 METADATA CONVENTIONS AND CONCEPTS...43
5.1 METADATA STRUCTURE...43
5.2 METADATA LEXICAL RULES ..43
5.3 CONVERSION OF METADATA NAMES TO JAVA NAMES..43
5.4 INVISIBLE BEHAVIOUR ATTRIBUTES ..44
5.5 STATE SPECIFIERS ..44
5.6 SEED INSTANCES ..44

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 4 of 64

6 METADATA REFERENCE ..45
6.1 MODEL...45

6.1.1 MODEL ...45
6.2 OBJECT AND BEHAVIOUR ...45

6.2.1 OBJECT and BEHAVIOUR...45
6.2.2 NAME ..45
6.2.3 TYPE..45
6.2.4 INCLUDES..46
6.2.5 ATTRIBUTES ..46
6.2.6 STATES..46
6.2.7 TRANSITIONS...47

6.3 EVENT ..47
6.3.1 EVENT...47
6.3.2 TYPE..48
6.3.3 ATTRIBUTES ..48

6.4 GENERIC...48
6.4.1 GENERIC ..48
6.4.2 MATCHES ...48

6.5 ACTOR..49
6.5.1 ACTOR ..49
6.5.2 BEHAVIOURS...49
6.5.3 EVENTS...49

7 BUILT IN TYPES ...50
7.1 VALUE TYPES...50

7.1.1 Boolean..50
7.1.2 Currency ..50
7.1.3 Date ...50
7.1.4 Integer ...50
7.1.5 String ...51

7.2 REFERENCE TYPE ...51
8 EVENT PROCESSING CYCLE ...52

8.1 USER EVENTS...52
8.2 SUB EVENTS...53

9 CALLBACK POLICY RULES..54

10 CALLBACK REFERENCE...56
10.1 CALLBACK SIGNALLING...56
10.2 MODELSCOPE CALLBACK TYPES ...56
10.3 EVENT CLASS CALLBACKS...57

10.3.1 Class Structure ..57
10.3.2 Attribute Handling (Value and Reference) ..57
10.3.3 Event Handling..58

10.4 BEHAVIOUR CLASS CALLBACKS ..58
10.4.1 Class Structure ..58
10.4.2 Derived Attribute (Value and Reference) ..59
10.4.3 Derived State ...59
10.4.4 Event Processing ...59

10.5 LANGUAGE REFERENCE ...60
10.5.1 Methods of Event ...61
10.5.2 Methods of Instance...62
10.5.3 Methods of EventValueAttribute..63
10.5.4 Methods of EventReferenceAttribute ...63

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 5 of 64

11 INSTANCE FILE ..64

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 6 of 64

1 Introduction

1.1 ModelScope
ModelScope is a tool for exploring and defining the requirements and logical architecture of transactional
business applications. Using ModelScope it is possible to create testable application models from simple
logical descriptions of the objects in the application and how they behave.

The heart of ModelScope is a state transition diagram interpreter which understands how events change the
states of objects, what events an object can accept based on its state, and how events create and destroy
relationships between objects. To provide a testable application model, ModelScope also provides a default
user interface that allows events to be entered and processed, and a database that provides persistent storage
of the created object instances.

ModelScope can be used to analyse a number of different kinds of application systems issues, for instance:

• To explore and define the logical scope and design of a new application or redesign of an existing
application.

• To explore and define the behavioural requirements that a package must meet by customisation or
parameterisation.

• To explore possible reconfiguration or wrapping of existing applications, e.g. to remove duplication
of data or functionality, or to decouple workflow from transactional processing.

• To explore and define the requirements for the systems support required for new or redesigned
business processes.

• To communicate aspects of application business purpose and logical design to a wider community.

The behaviour definitions used by ModelScope to create an executable and testable model are stored as
metadata. This Guide describes the modelling concepts used by ModelScope and the syntax of the language
used to make models executable.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 7 of 64

2 How to Use this Guide

2.1 Purpose
This Guide is intended to provide an overview of ModelScope modelling, and detailed information about the
format and syntax of the ModelScope modelling language. It is intended to be used as a reference guide when
constructing models to execute using ModelScope.

It is not intended to be a tutorial in modelling in general or ModelScope modelling in particular. If you are
not familiar with ModelScope modelling, please visit our website (www.metamaxim.com) to find out how you
can learn about it.

2.2 Organisation of this Guide
This Guide is organised as follows:

• Section 3 describes the fundamental concepts used in ModelScope.
• Section 4 works through an example to illustrate and explain how a model is represented.
• Section 5 describes general conventions used in ModelScope.

These three sections are intended to be read from beginning to end to obtain background understanding.

• Sections 6 through 11 are reference material for use when constructing and executing models.

2.3 Bank Examples
Example models, based around a simple Banking application, are provided to help understand ModelScope
modelling. These are to be used with Section 4, Worked Example.

The example models build progressively, starting with a simple model that only uses basic features and
ending with a model that illustrates most of the range of ModelScope’s capabilities.

The example models have been constructed to match the topics of each part of Section 4, as follows:

• Bank1 covers Section 4.1.
• Bank2 covers Section 4.2.
• Bank3 covers Section 4.3.
• Bank4 covers Section 4.4.
• Bank5 covers Section 4.5.

Please review these models and run them as you read Section 4 of this guide.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 8 of 64

3 Fundamentals

3.1 Behaviour Modelling
ModelScope supports the capture and agreement of the behavioural requirements of an application as part of
the requirements gathering stage of a systems project. The technique is applicable to transactional business
systems, whether front office or back office, distributed or centralised. The technique is independent of the
technology and platform that will be used to implement the final application.

Traditionally, models have been captured as text and diagrams, often using CASE (Computer Aided Systems
Engineering) tools. The method of sharing, reviewing and agreeing models has been by document review and
walk-throughs. ModelScope allows models to be executed and this enables those developing the model to be
sure that it is complete and coherent, and those reviewing the model to understand, test and interact with it.

Use of ModelScope does not assume or constrain the final architecture, implementation approach or
technology platform used to build and deploy the application. After ModelScope has been used to develop,
test, demonstrate and agree a model, the final system can be produced by a number of means including:

• Custom system development.
• Development using components or frameworks.
• Transfer of the model to another tool for code generation.
• Application package and/or workflow engine customisation or parameterisation.
• Modification or enhancement of an existing application.

Or some combination of these.

3.2 Objects, Events and States
Models are built from three main constructs:

• Objects These represent the objects with which the application is concerned. An object is defined
in terms of its states, behaviour (how it moves from one state to another) and data.
In a simple Banking System, the objects might be Customer and Account.

• Events These represent things that happen in the business or domain. Events are instantaneous
and result in changes to the states and data of the objects.
In a simple Banking System, key events might be register (a new Customer registers
with the Bank) and open (a Customer opens an Account).

• States Events cause objects to move from one state to another. Between events, states and data
do not change.
In the Banking System, the states of Account might be active and closed, and of
Customer might be registered and left.

This colour coding for Objects, Events and States is used in this guide to help explain the concepts and
examples.

3.3 State Transition Diagrams
State transition diagrams are used to show how objects move from state to state as a result of events. For the
Banking System, the state transition diagrams are shown in Figure 1.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 9 of 64

 Figure 1

These diagrams say that:

• A Customer may only open an Account once registered.
• A Customer may change address any number of times while registered.
• Any number of Accounts may be opened while the Customer is registered.
• Once an Account is active, any number of cash deposits and cash withdraws may be made until the

Account is closed.

Change Address Open

CUSTOMER

Register
registered

ACCOUNT

Cash Deposit Cash Withdraw

Open Close
closed active

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 10 of 64

4 Worked Example

4.1 Bank1

Please refer to the example model Bank1 for illustration of all the ideas and syntax introduced in this section.

4.1.1 ModelScope

ModelScope uses a modelling language to represent a model. As shown in Figure 2, a model is defined by
creating:

• A Model File containing ModelScope Metadata.
• Callback Files containing Java code.

 Figure 2

The main definition of the model is in the Model File. This is where objects, states, events and attributes are
defined. The Callback Files supplement the Model File by defining how calculations are performed.
Callbacks are not always needed – the simplest models do not need them at all.

In this Section, a simple Bank model is developed. As each part of the model is defined the Metadata (colour
coded yellow) and Callback code (colour coded green) are illustrated.

4.1.2 Objects

The metadata entries needed to define an Object are:
• The NAME by which an object instance will be identified in the User Interface.
• Its ATTRIBUTES (a list of data items that the object stores and maintains).
• Its STATES (a list of the possible states of the object).
• A state transition diagram, represented as TRANSITIONS.

The metadata (contained in the Model File) for Customer is shown in Figure 3.

The Model File

Always required

Contains the core definition of
Objects, Events, and State
Transitions

Interpreted by ModelScope

METADATA

•

•

•

Callbacks

Sometimes required

Contain Java code to perform
calculations

Invoked by ModelScope as
required

JAVA

•

•

•

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 11 of 64

 Figure 3

The NAME entry says that an instance of Customer will be labelled by the attribute Full Name when a list of
Customers is presented by ModelScope at the User Interface.

The TRANSITIONS represent the state transition diagram for Customer in Figure 1. Each transition has the
form:

starting state * event = ending state
and corresponds to one arrow on the state transition diagram.

The @new state in the first transition corresponds to the black dot on the diagram – i.e. the starting state of the
transition that creates a new instance. @new does not need to be included in the STATES entry. (Nor do other
special states that start with “@” that will be introduced later).

Every other state used in a transition as either a starting or an ending state must be declared in the STATES
entry.

4.1.3 Object Attributes

In addition to its state, each object has a set of data attributes that store information about it. The attributes are
defined in the ATTRIBUTES entry in Figure 3.

Each attribute is given a Type, in a similar way to most programming languages. ModelScope supports a
range of standard types:

• Boolean.
• Currency.
• Date.
• Integer.
• String.

More details on these types is given in Section 7.

Attributes with these types are called Value Attributes. All the attributes for Customer in Figure 3 are value
attributes.

Some attributes are pointers to other objects, Foreign Keys in database jargon. In this case, the type given to
the attribute in the metadata is the name of the referenced object. These are called Reference Attributes.
Figure 4 shows metadata for Account. The Owner attribute, shown in bold, is a reference attribute (pointer) to
the Customer who owns the Account.

 Figure 4

The STATES and TRANSITIONS for Account will be discussed shortly.

OBJECT Account
NAME Account Number
ATTRIBUTES Account Number: String, Owner: Customer, Balance: Currency
STATES …
TRANSITIONS …

OBJECT Customer
NAME Full Name
ATTRIBUTES Full Name: String, Address: String
STATES registered
TRANSITIONS @new*Register=registered,

 registered*Open=registered,
 registered*Change Address=registered

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 12 of 64

4.1.4 Events

The second key element for defining models in the ModelScope are Events. The metadata for the events in the
Bank example are shown in Figure 5.

 Figure 5

Each event has an ATTRIBUTES entry. Each attribute is given a type using the same set of types that has
already been described for object attributes.

Events can also have both value attributes and reference attributes. Reference Attributes in events can be
thought of as holders for the addressees of the event. Like emails, which can have a number of recipients, an
event can be sent to a number of objects. This is discussed further below.

4.1.5 Event Transition Correspondence

The Event Vocabulary of an object is the set of events that appear in the state transition diagram. The Event
Vocabularies of Customer and Account can be listed from the diagrams in Figure 1, and are shown in Table 1.

 Table 1

OBJECT EVENT VOCABULARY

Customer Register, Open, Change Address

Account Open, Cash Deposit, Cash Withdraw, Close

An event can appear in the vocabulary of more than one object, as Open does in this example. An event that is
in the vocabulary of multiple objects is called a Shared Event.

Every event must be addressed (using reference attributes) to all the objects in whose Event Vocabulary it
appears. Table 2 shows the objects addressed by the events in Figure 5.

EVENT Register
ATTRIBUTES Customer: Customer, Full Name: String, Address: String

EVENT Open
ATTRIBUTES Account: Account, Owner: Customer, Account Number: String

EVENT Change Address

ATTRIBUTES Customer: Customer, Address: String

EVENT Cash Deposit

ATTRIBUTES Target: Account, Amount: Currency

EVENT Cash Withdraw

ATTRIBUTES Source: Account, Amount: Currency

EVENT Close

ATTRIBUTES Account: Account

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 13 of 64

 Table 2

EVENT OBJECT(S) ADDRESSED REFERENCE
ATTRIBUTE

ATTRIBUTE
TYPE

Register The Customer being registered. Customer Customer

Open The Account being opened.
The Customer who owns the Account.

Account
Owner

Account
Customer

Change
Address

The Customer whose address has
changed.

Customer Customer

Cash Deposit The Account into which funds are
being deposited.

Target Account

Cash
Withdraw

The Account from which funds are
being withdrawn.

Source Account

Close The Account being closed. Account Account

The first two events (Register and Open) in Table 2 are creation events (for Customer and Account
respectively). Creation events are addressed to the objects they create – even though these objects do not yet
exist.

The set of events that have Customer in the last column of Table 2 corresponds exactly to the Event
Vocabulary of Customer (row 1 of Table 1), and the set of events that have Account in the last column
corresponds exactly to the Event Vocabulary of Account (row 2 of Table 1). Models must always be
constructed to have this correspondence.

Suppose, for instance, that the Open event had been defined as shown in Figure 6.

 Figure 6

This does not correspond to the state transition diagram for Customer. Customer has a transition for Open, but
there is no attribute in Figure 6 to cause the Open event to be sent to a Customer object.

When it loads a model, ModelScope checks that this correspondence is observed and gives an error if it is not.

4.1.6 Event Processing Cycle

ModelScope follows a cycle in processing an event, as described in Table 3.

EVENT Open
ATTRIBUTES Account: Account, Account Number: String

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 14 of 64

 Table 3

PROCESSING
STAGE

DESCRIPTION AUTOMATIC PROCESSING

Pre-presentation After the user has chosen an
object and an event at the user
interface, but before the event
attribute entry windows are
displayed.

ModelScope populates the event
attributes from the selected object by
name co-incidence.

Presentation On completion of the Pre-
presentation Stage, the event
attributes are presented to the
user at the user interface. The
user can enter values, altering
or over-writing those loaded
automatically at the pre-
presentation stage.

N/A

Post-presentation After the user has entered
values for event attributes and
clicked the button to submit
the event.

ModelScope checks that the content of each
attribute conforms to the validation rules
given in Section 7.

If any check fails, a message is presented at
the user interface, and no further processing
of the event takes place.

Update After all the checks in the
Post-presentation Stage have
been performed, and only if
they all pass.

ModelScope presents the event to each
object addressed by the event. For each
object it:
Populates the object attributes from the
event attributes by name co-incidence.
Updates the state according to the transition
definition (i.e. the object state is changed
from the starting to the ending state of the
transition).

The Event Processing Cycle shown in Table 3 has been simplified. A full version of the event processing
cycle is given in Section 8.

4.1.7 Name Co-incidence Data Transfer

As highlighted in Table 3, ModelScope performs automatic transfer of attribute values by name-coincidence:
• At Pre-presentation stage, the event is populated with object attributes prior to display at the user

interface. The user may then alter or over-write these values before submitting the event.
• At Update stage, the event attributes are transferred to the object attributes.

Figure 7 shows how this works for a Change Address event for Customer.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 15 of 64

 Figure 7

Automatic transfer takes place only if both the Attribute name and the Attribute type match.

Reference attributes are transferred as well value attributes. This means that, for instance, when a new
Account is opened the owner attribute from the open event, which references the Customer who owns the
Account, is transferred to the owner attribute in the Account object. This creates the Foreign Key pointer from
an Account to its owning Customer.

Name co-incidence transfer does not work if a calculation is needed in the update. For instance, the update of
the balance attribute in Account for a deposit or withdraw event requires that the amount from the event is
added to or subtracted from the balance. In this case a callback is needed, as described in the following
section.

4.1.8 Event Processing Callbacks

If updating requires more than simple value transfer name co-incidence updating is not sufficient. In this case
a callback is needed.

The metadata for Account is shown in Figure 8.

 Figure 8

The “!” in front on the Cash Deposit and Cash Withdraw events in the Transitions indicate that there are

OBJECT Account
 NAME Account Number
 ATTRIBUTES Account Number: String, Owner: Customer, Balance: Currency
 STATES open, closed
 TRANSITIONS @new*Open=active,
 active*Close=closed,
 active*!Cash Deposit=active,
 active*!Cash Withdraw=active

Transfer of
old address

from object to
event

Transfer of
new address
from event to

object
Name Co-incidence Transfer

Event

Object Customer

Change
Address

Customer

Change
Address

Change
Address

User
Interface

Pre-Presentation Presentation Update

User alters
old address to
new address

1 2 3

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 16 of 64

callbacks associated with these transitions. The callbacks are shown in Figure 9.

 Figure 9

Note the following:

• The class containing the callback functions is named after the object, in this case: Account.
• The callbacks are coded as two member functions, named “process” followed by the name of the

event (spaces are removed from the event name).
• “this” is the object (i.e. the Account) calling the callback. The “event” parameter is the event

(Cash Deposit or Cash Withdraw) being processed.
• Special “getCurrency” and “setCurrency” statements are used to access the values from the

Event and Behaviour attributes. The callback language is described in detail in Section 10.5.

ModelScope supports a variety of different kinds of callback. The ones described here are called Event
Processing Callbacks (see 10.4.4).

Arguably, there should also be an Event Processing Callback for the Open event to initialise the Balance to
zero. However, as ModelScope initialises numeric attributes to zero when instantiating an object (See Section
7), this can be omitted.

4.1.9 Actors

Typically, the users of a system fall into different categories, with different responsibilities, interests and
needs. Actors allow the User Interface to be tailored to match these different categories. For instance, in the
simple banking system, two actors might be:

Customer Management When a new customer wishes to open an Account, a Customer Manager is

responsible for working through the procedures required to register the customer
with the bank and open the account. This person deals with subsequent significant
events in the relationship with the customer, such as changing address, opening
further Accounts, closing Accounts and finally leaving the bank. The Customer
Manager therefore needs access to Customer and Account objects and the
Register, Change Address, Open, Close and Leave events.

Teller The Teller handles deposits and withdraws. The teller needs access to the

Account object and the Cash Deposit and Cash Withdraw events.

The Metadata for these actors is shown in Figure 10.

package Bank1;

import com.metamaxim.modelscope.callbacks.*;

public class Account extends Behaviour {

 public void processCashDeposit(Event event, String subscript) {
 int newBalance = this.getCurrency("Balance") +
 event.getCurrency("Amount");
 this.setCurrency("Balance", newBalance);
 }

 public void processCashWithdraw(Event event, String subscript) {
 int newBalance = this.getCurrency("Balance") -
 event.getCurrency("Amount");
 this.setCurrency("Balance", newBalance);
 }

}

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 17 of 64

 Figure 10

Actor specifications are independent of the rest of the model, the only constraint is that the objects and events
used to define the subset for each actor exist. Actors are merely windows on the model and cannot alter or
corrupt its behaviour.

Note that the subsets defined for different actors can overlap. Account is in both actor definitions and it is
possible to have events that appear in more than one actor definition too, although that does not occur in this
example.

4.2 Bank2
Please refer to the example model Bank2 for illustration of all the ideas and syntax introduced in this section.

4.2.1 Events in Context

The phrase In Context is used to describe whether or not an event can happen, based on the state of an object.
For each state of an object, the events that are in context for that state are those for which there is an arrow
(transition) leaving the state.

The events in context are determined from the state transition diagrams. Table 4 shows, for Customer and
Account, the events in context for each state as specified in the diagrams in Figure 1.

 Table 4

STATE EVENTS IN CONTEXT

CUSTOMER

@new Register

registered Open, Change Address

ACCOUNT

@new Open

active Cash Deposit, Cash Withdraw, Close

closed

This simple definition of In Context is for objects that have a single state transition diagram. As we shall see
in the next section, a slightly more complex definition is needed for objects that have multiple state transition
diagrams.

4.2.2 Objects and Behaviours

Simple objects, such as the Customer and Account objects defined above, only need a single state transition
diagram to define their behaviour. More complex object behaviour may require the use of multiple state
transition diagrams, and for these ModelScope uses Behaviours. Each Behaviour has its own state transition
diagram, and Behaviours are linked together (or composed) to form the full definition of an object.

Every object in a model has an Owning Behaviour (defined using the keyword OBJECT in the metadata) and
may have any number of other Subsidiary Behaviours (each defined using the keyword BEHAVIOUR in the
metadata). For the rest of this document, the word “Behaviour” will be used in the generic sense, to

ACTOR Customer Manager
BEHAVIOURS Customer, Account
EVENTS Register, Change Address, Open, Close

ACTOR Teller

BEHAVIOURS Account
EVENTS Cash Deposit, Cash Withdraw

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 18 of 64

mean of either an Owning Behaviour or a Subsidiary Behaviour.

When more than one Behaviour is used to define an object, the lists of attributes of the Behaviours are added
together to give the attributes of the object, and the state transition diagrams of the Behaviours are composed
in parallel.

Composing the state transition diagrams works as follows:

• Each event in the Event Vocabulary of the object must appear in at least one of the state transitions
diagrams of the object, but can appear in more than one.

• Where an event appears in more than one state transition diagram, it is in context for the object as a
whole if it is in context in each of the diagrams where it appears.

Figure 11 shows two state transition diagrams, both describing an Account.

 Figure 11

These two diagrams both belong to the Account object. The first diagram is the same as the Account in Figure
2.

The second diagram, Freezing, makes the following additional statements:

• Once an Account has been opened, it can be frozen and released any number of times.
• A cash withdraw can only be made when the Account is in the not frozen state.

Note the following:

• A cash withdraw can only be made when the Account is both active and not frozen, as this event
appears in both of the diagrams.

• A cash deposit can be made whether the Account is frozen or not. The cash deposit event does not
appear in the second diagram, so it is not constrained by it.

• Similarly, a close can take place whether the Account is frozen or not.

The Event Vocabulary of the Account object is now extended, as shown in Table 5.

Table 5

OBJECT EVENT VOCABULARY

Customer Register, Open, Change Address

Account Open, Cash Deposit, Cash Withdraw, Close, Freeze, Release

The Account is now described as shown in Figure 12. The Behaviour called Freezing defines the second state
transition diagram and it is linked to the main Account Behaviour using the INCLUDES statement in the
Account object.

Cash Withdraw

FREEZING

Open
not frozen frozen

Release

Freeze

ACCOUNT

Cash Deposit Cash Withdraw

Open Close
closedactive

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 19 of 64

 Figure 12

When an Account is instantiated, an instance of Freezing is automatically instantiated with it as part of the
same object. These two Behaviours work together to determine how the Account behaves.

Note that the metadata for Freezing in Figure 11 has no NAME entry. Only Owning Behaviours (defined
using the OBJECT keyword) require a NAME entry.

The Behaviours defined so far can be depicted diagrammatically as shown in Figure 13.

 Figure 13

There are now two new events, for which the metadata is shown in Figure 14.

 Figure 14

Note that Freezing, rather than Account, is used as the type of the reference attributes in the Freeze and
Release events. Account would work equally well in this version of the model. However, as will be seen later
in Section 4.4.1, using Freezing as the type will facilitate re-use.

In addition the Actor specifications need to be altered, as shown in Figure 15. Only the Customer Manager
has access to the Freeze and Release events.

 Figure 15

OBJECT Account
 NAME Account Number
 INCLUDES Freezing
 ATTRIBUTES …
 STATES …
 TRANSITIONS …

BEHAVIOUR Freezing
 STATES not frozen, frozen
 TRANSITIONS @new*Open=not frozen,
 not frozen*Freeze=frozen,
 frozen*Release=not frozen,
 not frozen*Cash Withdraw=not frozen

ACTOR Customer Manager
BEHAVIOURS Customer, Account
EVENTS Register, Change Address, Open, Close, Freeze, Release

ACTOR Teller

BEHAVIOURS Account
EVENTS Cash Deposit, Cash Withdraw

EVENT Freeze
ATTRIBUTES Subject: Freezing

EVENT Release

ATTRIBUTES Subject: Freezing

Customer Account

Freezing

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 20 of 64

4.2.3 Derived Attributes

Derived attributes are calculated rather than stored. The fact that an attribute is derived is signalled by a “!”
before the attribute name in the ATTRIBUTES metadata entry. A callback is needed to return the value.

ModelScope invokes the callback whenever the value of the attribute is needed, either to display at the user
interface or because it is used in another callback.

Figures 16 and 17 show an example. Figure 16 shows the metadata.

 Figure 16

Figure 17 shows the callback code that returns the value of the attribute. This is done by iterating through the
Accounts owned by the Customer and adding the balances together.

 Figure 17

Note the following:

• The class containing the callback functions is named after the Behaviour, in this case: Customer.
• The member function is named “get” followed by the name of the Attribute (leaving out any spaces

from the attribute name).
• this.selectByRef(“Account”, “Owner”) returns an array of all the Account objects whose

reference attribute “Owner” points to this Customer. In other words, it returns all the Accounts for
this Customer.

• The function returns an integer because this is the way ModelScope represents currency amounts
(see Section 7).

4.2.4 Derived States

So far, the states of a Behaviour have been driven by events as shown in the state transition diagrams.
However, ModelScope also allows states to be derived, in a similar manner to derived attributes.

Suppose that an Account can only be closed if it is in credit. This is handled by having another Behaviour,
called “Close Control”, associated with an Account. The state transition diagram for Close Control is shown
in Figure 18.

OBJECT Customer
NAME Full Name
ATTRIBUTES Full Name: String, Address: String, !Total Balance: Currency
STATES registered, left
TRANSITIONS @new*Register=registered,
 registered*Open=registered,

 registered*Leave=left

package Bank2;

import com.metamaxim.modelscope.callbacks.*;

public class Customer extends Behaviour {

 public int getTotalBalance() {
 int totalBalance = 0;
 Instance[] accounts = this.selectByRef("Account", "Owner");
 for (int i = 0; i < accounts.length; i++)
 totalBalance += accounts[i].getCurrency("Balance");
 return totalBalance;
 }

}

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 21 of 64

 Figure 18

The diagram in Figure 18 makes the following statements:

• A close can occur when the Account is in credit.
• A close cannot occur when the Account is overdrawn.

No other events are mentioned, so no other events are constrained by this diagram.

ModelScope uses this constraint to determine when the Close event is in context for an Account. If the
Account is “in credit” the close event is in context and appears as a possible event at the user interface. If the
Account is overdrawn Close is not shown as a possible event.

This state transition diagram is different from previous ones in the following respects:

• There is no start state (black dot).
• The diagram is not “connected” – not all the state boxes are joined by arrows.

Both of these differences are because the diagram has states that are calculated rather than driven by events.
The use of a calculated state is appropriate here because whether an Account is in credit or overdrawn
depends on the cumulative effect of deposits and withdrawals, not just on the last event.

The metadata is shown in Figure 19. The fact that the state is calculated is signalled by a “!” in front of the
Behaviour name in the BEHAVIOUR entry.

 Figure 19

The INCLUDES statement for Account now specifies both Freezing and Close Control.

The transition in Close Control uses @any as the post-state. This means that any post-state is acceptable for
this transition, as shown in the diagram by the fact that the Close arrow does not end at a state. The @any does
not need to be included in the STATES entry.

Note that both “in credit” and “overdrawn” must be listed in the STATES entry for Close Control, even
though “overdrawn” is not used by any transition. All states, other than those that start with “@”, must be
listed.

Figure 20 shows the callback code that calculates the state.

OBJECT Account
NAME Account Number
INCLUDES Freezing, Close Control
ATTRIBUTES …
STATES …
TRANSITIONS …

BEHAVIOUR Freezing

STATES …
TRANSITIONS …

BEHAVIOUR !Close Control

STATES in credit, overdrawn
TRANSITIONS in credit*Close=@any

CLOSE CONTROL

Close
in creditoverdrawn

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 22 of 64

 Figure 20

The Behaviour structure is now as shown in Figure 21.

 Figure 21

4.3 Bank3
Please refer to the example model Bank3 for illustration of all the ideas and syntax introduced in this section.

4.3.1 Behaviour Re-use

Behaviours can be re-used in different objects, as shown in Figure 22.

 Figure 22

This new structure introduces two new objects: Current Account and Savings Account. Both of these use
Account. Because they use Account, they also use the Freezing and Close Control Behaviours.

Outline metadata for Current Account, Savings Account and Account is shown in Figure 23.

package Bank2;

import com.metamaxim.modelscope.callbacks.*;

public class CloseControl extends Behaviour {

 public String getState() {
 if (this.getCurrency("Balance") < 0) return "overdrawn";

else return "in credit";
 }

}

Customer

Freezing Close Control

Account

Customer

Account

Current Account Savings Account

Freezing Close Control

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 23 of 64

 Figure 23

Account is no longer an Owning Behaviour, so is declared using the BEHAVIOUR keyword and now has no
NAME entry. Otherwise, the metadata for Account is unchanged from Figure 8.

Current Account and Savings Account are Owning Behaviours so have NAME entries. Note that the attribute
used for the NAME entry does not have to be local that behaviour. In this case the attribute used to name
Current and Savings Accounts (Account Number) belongs to Account.

When ModelScope instantiates an object, it instantiates the Owning Behaviour and all Subsidiary Behaviours
below it in the INCLUDEs structure. Thus the Behaviours included when each object type is instantiated is
shown in Table 6, with the Owning Behaviours shown in bold.

Table 6

OBJECT BEHAVIOURS INSTANTIATED

Customer Customer

Current Account Current Account, Account, Freezing, Close Control

Savings Account Savings Account, Account, Freezing, Close Control

4.3.2 Post-State Constraints

The two objects Current Account and Savings Account are so far identical. This is not realistic as Current
and Savings Accounts normally have different purposes and different rules.

For example, a Current Account has a limit, set when the Account is opened, and a rule that the Account
cannot be overdrawn beyond this limit. (There would also be behaviour rules specific to a Savings Account
but these are not considered here).

The constraint on the balance for a Current Account is specified using a derived state Behaviour as shown in
Figure 24.

 Figure 24

LIMIT CONTROL
Cash Withdraw

within limit over limit

OBJECT Current Account
NAME Account Number
INCLUDES Account
STATES …
TRANSITIONS …

OBJECT Savings Account
NAME Account Number
INCLUDES Account
STATES …
TRANSITIONS …

BEHAVIOUR Account
INCLUDES Freezing, Close Control
ATTRIBUTES Account Number: String, Owner: Customer, Balance: Currency
STATES …
TRANSITIONS …

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 24 of 64

This diagram is similar to that shown in Figure 18, except that the constraint is expressed in terms of the
terminating state (“within limit”) rather than the initial state. This is because the constraint concerns the effect
(resulting state) of the event. Figure 24 says that a withdraw on an Account must result in the state “within
limit”; in other words, a withdraw that does not end in this state cannot happen. This kind of constraint is
called a Post-State Constraint.

ModelScope can only check that post-state constraints are met after the effects of the event have been
determined in the final stage of the event processing cycle. If an event violates a post-state constraint a
message is issued to the user and the event has no effect on the states or attributes of the model. It is “Rolled
Back”, in database jargon.

Figure 25 shows the new Behaviour structure.

 Figure 25

Figure 26 shows the metadata for Limit Control.

 Figure 26

Here the special state @any is used to indicate that we do not care what the starting state is.

Figure 27 shows the callback for the derived state of Limit Control.

 Figure 27

The Limit attribute is maintained by Current Account. How this is done is described below.

package Bank3;

import com.metamaxim.modelscope.callbacks.*;

public class LimitControl extends Behaviour {

 public String getState() {
 int minBalance = 0 – this.getCurrency("Limit");
 if (this.getCurrency("Balance") < minBalance)

return "over limit";
else return "within limit";

 }

}

BEHAVIOUR !Limit Control
STATES within limit, over limit
TRANSITIONS @any*Cash Withdraw=within limit

Account

Current Account Savings AccountCustomer

Freezing

Close Control

Limit Control

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 25 of 64

4.3.3 Generic Events

To support the withdrawal constraint described in the previous section a Current Account needs an attribute,
Limit, that is set when the Account is opened and may subsequently be changed. This attribute cannot be put
in the Account Behaviour because it does not apply to Savings Accounts. It is therefore maintained by the
Current Account Behaviour. Figure 28 shows the modified state transition diagram for this behaviour
including a new event to change the limit.

 Figure 28

This diagram says that a Change Limit event can happen any time once the Current Account is opened.

We now need two forms of the Open event: Open Current (with a Limit attribute) and Open Savings (without
a Limit attribute). Figure 29 shows the metadata for the Current Account and Savings Account Behaviours
and the events Open Current, Open Savings and Change Limit.

 Figure 29

Note the following:

• The states of Current Account and Savings Account are event driven so there is no “!” in front of the
behaviour names, and no callbacks are necessary to calculate the state.

• Name co-incidence is used to update the Limit attribute therefore no callback is necessary for update.
• The type of the Account attribute in the events Open Current and Change Limit is “Current Account”

and in the event Open Savings is “Savings Account”. This is because these events are specific to the
different Account types and must address them accordingly.

The reference attributes with type Account in the other events used by Accounts (Cash Deposit, Cash
Withdraw, Close, Freeze, Release) are left as they are as these events are not specific to Current or Savings.

OBJECT Current Account
NAME Account Number
INCLUDES Account, Limit Control
ATTRIBUTES Limit: Currency
STATES opened
TRANSITIONS @new*Open Current=opened,
 opened*Change Limit=opened

OBJECT Savings Account
NAME Account Number
INCLUDES Account
STATES opened
TRANSITIONS @new*Open Savings=opened

EVENT Open Current
 ATTRIBUTES Account: Current Account, Account Number: String,
 Owner: Customer, Limit: Currency

EVENT Open Savings
 ATTRIBUTES Account: Savings Account, Account Number: String,
 Owner: Customer

EVENT Change Limit

ATTRIBUTES Account: Current Account, Limit: Currency

CURRENT ACCOUNT
Open Current

opened

Change Limit

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 26 of 64

There is now an apparent problem with the definition of the model. We have replaced the old Open event (as
defined in Figure 5) by Open Current in Current Account and Open Savings in Savings Account, but the two
Behaviours Account and Freezing still use the old Open event. If the model is left as it stands, there would be
two unwanted results:

• Accounts would have two creation events, the new Open Current (or Open Savings) and the old
Open.

• The new creation events (Open Current and Open Savings) would not cause a transition to fire in the
Account Behaviour (to take it from @new into the active state) or the Freezing Behaviour (to take it
from @new into the not frozen state) because these still use the old Open event.

This is a common situation when re-using Behaviours and arises because the re-used Behaviours need events
that have specific forms in the re-using objects. ModelScope provides a facility for defining Generic Events
for such situations, as shown in Figure 30.

 Figure 30

The Generic defines “Open” as a generic name that can match either “Open Current” or “Open Savings”. A
transition defined in terms of the generic Open will “fire” when either an Open Current or an Open Savings
occurs. Semantically, this is equivalent to making two specific versions of Account, and similarly two
versions of Freezing, one using Open Current and one using Open Savings for use in the Current Account and
Savings Account respectively.

OBJECT Current Account
 NAME Account Number
 INCLUDES Account, Limit Control
 ATTRIBUTES Limit: Currency
 STATES opened
 TRANSITIONS @new*Open Current=opened,
 opened*Change Limit=opened

OBJECT Savings Account
 NAME Account Number
 INCLUDES Account
 STATES opened

TRANSITIONS @new*Open Savings=opened

BEHAVIOUR Account
 INCLUDES Freezing, Close Control
 ATTRIBUTES Account Number: String, Owner: Customer, Balance: Currency
 STATES open, closed
 TRANSITIONS @new*Open=active,
 active*Close=closed,
 active*!Cash Deposit=active,
 active*!Cash Withdraw=active

BEHAVIOUR Freezing
 STATES not frozen, frozen
 TRANSITIONS @new*Open=not frozen,
 not frozen*Freeze=frozen,
 frozen*Release=not frozen,
 not frozen*Cash Withdraw=not frozen

EVENT Open Current
 ATTRIBUTES Account: Current Account, Account Number: String,
 Owner: Customer, Limit: Currency

EVENT Open Savings
 ATTRIBUTES Account: Savings Account, Account Number: String,
 Owner: Customer

EVENT Change Limit
 ATTRIBUTES Account: Current Account, Limit: Currency

GENERIC Open
 MATCHES Open Current, Open Savings

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 27 of 64

The old EVENT definition of the Open event (as shown in Figure 5) must be removed from the metadata as it
is now superseded by the new Generic definition of Open. The BEHAVIOUR metadata for Account and
Freezing are unchanged from the versions given in Figures 8 and Figure 12.

Events that are defined with an EVENT entry in the metadata are called Concrete Events to distinguish them
from Generics. The Event Vocabulary of an Object is determined by concrete event transitions only, and
adding a transition based on a Generic does not change the Event Vocabulary. For example, the Event
Vocabularies of Current Account and Savings Account are now as in Table 7.

Table 7

OBJECT EVENT VOCABULARY

Current Account Open Current , Cash Deposit, Cash Withdraw, Change Limit, Close,
Freeze, Release

Savings Account Open Savings, Cash Deposit, Cash Withdraw, Close, Freeze, Release

Generics are therefore ignored when checking the correspondence between Events and Transitions as
described in Section 4.1.5.

The Open event also appears in Customer (see Figure 1). This must be replaced with the two events Open
Current and Open Savings as shown in Figure 31.

 Figure 31

Had the state transition diagram for Customer been left as it was in Figure 1 the Open Current and Open
Savings would not be in the Event Vocabulary of Customer, as Open is a Generic and the Event Vocabulary
is determined only by concrete events. This would result in an error, as there is a Customer reference attribute
in the metadata for both Open Current and Open Savings, so the correspondence check between Events and
Transitions would fail.

The revised Customer metadata is shown in Figure 32.

 Figure 32

Also, Actors are always defined in terms of concrete events so the actors shown in Figure 15 are changed as
shown in Figure 33.

OBJECT Customer
 NAME Full Name
 ATTRIBUTES Full Name: String, Address: String

STATES registered
TRANSITIONS @new*Register=registered,

 registered*Open Current=registered,
 registered*Open Savings=registered,
 registered*Change Address=registered

CUSTOMER

Register
registered

Change Address

Open
Current

Open
Savings

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 28 of 64

 Figure 33

These actor specifications assume, somewhat unrealistically, that there are separate Tellers for Current and
Savings Accounts. This unrealistic definition has been made to illustrate that Actor definitions can use both
Owning and Subsidiary Behaviours. Using Current Account and Savings Account means that visibility will be
restricted to these types of Account in the user interface. On the other hand, the Customer Manager actor is
specified using the Account Behaviour making all Accounts visible.

4.3.4 Event Subscripts

A Transfer event allows funds to be transferred from one Account to another. The metadata for the Transfer
event is shown in Figure 34.

 Figure 34

Transfer has two reference attributes with the type “Account”, one for the source Account of the Transfer, and
one for the target Account. “Account” is used as the type of these attributes, rather than “Current Account” or
“Savings Account”, because the two Accounts involved in a Transfer can be of either type.

The revised metadata for Account including transitions for Transfer is shown in Figure 35.

 Figure 35

The Transfer event is a shared event (see section 4.1.5). In the examples of shared events up to this point,
sharing has been between two objects (or, more correctly, Behaviours) of different types. For instance, Open
Current is shared between the two Behaviours Current Account and Customer. Transfer, however, is shared
between two Behaviours of the same type, namely Account. This means that there are two transitions for the
Transfer event in Account (shown in bold in Figure 35), one for transferring in and one for transferring out.
The two transitions are distinguished using the names of the reference attributes from the Transfer event
(“Source” and “Target”) enclosed in square brackets as shown in Figure 35. This is called Event
Subscripting.

Event subscripting is required when a single event addresses two (or more) Behaviour instances of the same

EVENT Transfer
ATTRIBUTES Source: Account, Target: Account, Amount: Currency

BEHAVIOUR Account
 INCLUDES Freezing, Close Control
 ATTRIBUTES Account Number: Integer, Owner: Customer, Balance: Currency
 STATES active, closed
 TRANSITIONS @new*Open=active,
 active*Close=closed,
 active*!Cash Deposit=active,
 active*!Cash Withdraw=active,
 active*!Transfer[Source]=active,
 active*!Transfer[Target]=active

ACTOR Customer Manager
 BEHAVIOURS Customer, Account
 EVENTS Register, Change Address, Open Current, Open Savings,
 Change Limit, Close, Freeze, Release

ACTOR Current Teller
 BEHAVIOURS Current Account
 EVENTS Cash Deposit, Cash Withdraw

ACTOR Savings Teller
 BEHAVIOURS Savings Account
 EVENTS Cash Deposit, Cash Withdraw

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 29 of 64

type, to distinguish the different transitions caused by the event. It is possible (though not the case here) that
the different transitions caused by the event have different starting and ending states.

For the purposes of checking the correspondence between Events and Transitions, as described in Section
4.1.5, Transfer[Source] and Transfer[Target] are counted as distinct members of the Event Vocabulary of the
Current Account and Savings Account objects. So, although there are two attributes (Source and Target) in
Transfer that address these objects, there are also two matching members of the Event Vocabulary and the
correspondence is maintained.

Because the Balance of the Account must be updated by a callback there is a “!” in front of the Event name
for both Transfer transitions. The update callbacks are shown in Figure 36.

 Figure 36

In the new callback, the parameter “subscript” is used to determine whether the callback is being invoked for
the transition in the source Account or the target Account as the processing is obviously different for the two.

In addition, the withdraw side of a Transfer event is also subject to the constraints described in Figures 11
(Freezing) and 24 (Limit Control), as shown in Figure 37.

package Bank3;

import com.metamaxim.modelscope.callbacks.*;

public class Account extends Behaviour {

 public void processCashDeposit(Event event, String subscript) {
 int newBalance = this.getCurrency("Balance")
 + event.getCurrency("Amount");
 this.setCurrency("Balance", newBalance);
 }

 public void processCashWithdraw(Event event, String subscript) {
 int newBalance = this.getCurrency("Balance")
 - event.getCurrency("Amount");
 this.setCurrency("Balance", newBalance);
 }

 public void processTransfer(Event event, String subscript) {
 if (subscript.equals("Target")) {
 processCashDeposit(event, subscript);
 }
 else
 processCashWithdraw(event, subscript);
 }
 }

}

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 30 of 64

 Figure 37

The revised metadata for these two Behaviours is shown in Figure 38.

 Figure 38

An alternative and better approach is to define a Generic for any kind of withdraw event, as shown in Figure
39.

 Figure 39

This gives exactly the same behaviour as the metadata in Figure 38 but makes maintenance of the model
easier. If a new kind of withdraw (e.g. funds transfer to another Bank) is introduced into the model only the
Generic definition needs to be changed and the constraints specified by Freezing and Limit Control will
automatically apply.

As Figure 39 illustrates, it is possible to use event subscripts when defining a Generic.

BEHAVIOUR Freezing
 STATES not frozen, frozen
 TRANSITIONS @new*Open=not frozen,
 not frozen*Freeze=frozen,
 frozen*Release=not frozen,
 not frozen*Withdraw=not frozen

BEHAVIOUR !Limit Control
 STATES within limit, over limit
 TRANSITIONS @any*Withdraw=within limit

GENERIC Withdraw
 MATCHES Cash Withdraw, Transfer[Source]

BEHAVIOUR Freezing
 STATES not frozen, frozen
 TRANSITIONS @new*Open=not frozen,
 not frozen*Freeze=frozen,
 frozen*Release=not frozen,
 not frozen*Cash Withdraw=not frozen,
 not frozen*Transfer[Source]=not frozen

BEHAVIOUR !Limit Control
 STATES within limit, over limit
 TRANSITIONS @any*Cash Withdraw=within limit,
 @any*Transfer[Source]=within limit

LIMIT CONTROL

Withdraw
within limit over limit

Transfer[Source]

Withdraw Transfer[Source]

FREEZING

Open
not frozen frozen

Release

Freeze

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 31 of 64

4.4 Bank4
Please refer to the example model Bank4 for illustration of all the ideas and syntax introduced in this section.

4.4.1 More on Re-use

Suppose the Freeze and Release events are to be made available for Customer as well as for Accounts. If a
Customer is frozen, all of their Accounts are frozen. In this sense placing a freeze on a Customer “cascades”
to the Accounts held by the Customer.

The approach is to reuse the Freezing Behaviour across both the Account and Customer objects. The
constraint on Withdraw is separated to another Behaviour, Freeze Control, as it requires a derived state based
on the freeze status of both the Customer and the Account.

Figure 40 shows the new Behaviour structure.

 Figure 40

The revised state transition diagram for Freezing and the state transition diagram for Freeze Control are
shown in Figure 41.

 Figure 41

Freeze Control does not need an initialising event because its state is derived.

The metadata required is shown in Figure 42.

Account

Current Account Savings Account Customer

Freezing

Close Control

Limit Control

Freeze Control

FREEZE CONTROL

Withdraw
freeze not

active
freeze active

FREEZING

Initialise Freeze
not frozen frozen

Release

Freeze

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 32 of 64

 Figure 42

Note the following:

• The transition “not frozen*Withdraw=not frozen” has been removed from Freezing as the
constraint on Withdraws is now handled by the new Freeze Control Behaviour.

• A Generic called Initialise Freeze has been used to allow the Freezing Behaviour to be initiated, by
putting it into the not frozen state, when either a Register (for a Customer) or an Open (for an
Account) takes place. Initialise Freeze is an example of a Generic defined in terms of another
Generic (Open).

The Generic, Initialise Freeze, created to match any event that creates either a Customer or an Account, uses a
subscript in its definition. The subscript is inherited when the Generic is expanded into its constituent concrete
events. The definition of Initialise Freeze in Figure 42 is therefore equivalent to that shown in Figure 43.

 Figure 43

The subscript [Account] is required because Open Current and Open Savings also appear as transitions in
Customer. However, the transition for Open events in Customer, which reflect the fact that only a registered
Customer can open an Account, should not cause the state of Freezing for the Customer to be initialised, only

GENERIC Initialise Freeze
MATCHES Open Current[Account], Open Savings[Account], Register

OBJECT Customer
 NAME Full Name

INCLUDES Freezing
ATTRIBUTES Full Name: String, Address: String
STATES registered
TRANSITIONS @new*Register=registered,

 registered*Open Current=registered,
 registered*Open Savings=registered,
 registered*Change Address=registered

BEHAVIOUR Account
 INCLUDES Freezing, Close Control, Freeze Control
 ATTRIBUTES Account Number: String, Owner: Customer, Balance: Currency
 STATES active, closed
 TRANSITIONS @new*Open=active,
 active*Close=closed,
 active*!Cash Deposit=active,
 active*!Cash Withdraw=active,
 active*!Transfer[Source]=active,
 active*!Transfer[Target]=active

BEHAVIOUR Freezing
 STATES not frozen, frozen
 TRANSITIONS @new*Initialise Freeze=not frozen,
 not frozen*Freeze=frozen,
 frozen*Release=not frozen

BEHAVIOUR !Freeze Control
 ATTRIBUTES !Customer Freeze Status: String
 STATES freeze active, freeze not active
 TRANSITIONS freeze not active*Withdraw=@any

GENERIC Withdraw
 MATCHES Cash Withdraw, Transfer[Source]

GENERIC Open
 MATCHES Open Current, Open Savings

GENERIC Initialise Freeze
 MATCHES Open[Account], Register

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 33 of 64

the initial Register should do that. In Customer however, the Open events have the (implicit) subscript
[Owner], as it is this attribute that addresses the event to the Customer object. Using the subscript [Account]
means that Initialise Freeze will not match the Open transitions in Customer.

The type of the reference attributes in Freeze and Release, Freezing, (defined in Figure 14) do not have to be
changed. Had Account been used as the type for the reference attribute (Subject) in these events, the Event
Transition correspondence check described in Section 4.1.5 would fail when applied to Customer. This is
because Customer now has the events Freeze and Release in its Event Vocabulary, but the event reference
attributes would not address the Customer object.

The callback code for the Freeze Control Behaviour is shown in Figure 44. This prevents a Withdraw if there
is a freeze active for either the Customer or the Account.

 Figure 44

4.4.2 Event Handling Callbacks

Normally ModelScope passes events directly to the objects they affect, as described in the Event Processing
Cycle in Table 3. However it is possible to instruct ModelScope to pass an event to a callback, instead of
submitting it to the model. This allows more complex events to be defined as callback processing can spawn a
number of separate events to the model from a single event entered by the user.

A full version of the Event Processing Cycle, showing where all types of Callback are invoked, is in Section
8.

Suppose that when a new customer registers, he or she normally gets a Current Account and may get a
Savings Account. New Accounts are numbered sequentially. A new Set Up event allows all this to be done as
a single input by the user. Figure 45 shows the revised state transition diagram.

 Figure 45

package Bank4;

import com.metamaxim.modelscope.callbacks.*;

public class FreezeControl extends Behaviour {

public String getCustomerFreezeStatus() {
return this.getInstance("Owner").getState("Freezing");

 }

public String getState() {
 if (this.getState("Freezing").equals("frozen") ||
 this.getString("Customer Freeze Status").equals("frozen"))

return "freeze active";
else return "freeze not active";

 }

}

Set Up

CUSTOMER

Register

registered

Change Address

Open
Current

Open
Savings

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 34 of 64

The old Register is left there to accommodate the case of a Customer that needs to be registered without
opening any accounts, so there are now two creation events for Customer either of which will create a new
Customer.

Figure 46 shows the required metadata.

 Figure 46

The new event has been added as a transition in Customer with a pre-state of @new. This means that the event
will appear as a possible creation event for a new Customer.

The Set Up event has the same attributes as the Register event, plus two new ones:

• A Limit to be used in the Current Account.
• A Boolean that states whether or not a Savings Account is to be created.

The “!” in front of the event name indicates that, after the event attributes have been entered at the user
interface and the event submitted, it is passed to a callback rather than to the model. The callback is shown in
Figure 47 and does the following:

• Creates and submits a “Register” event to create the Customer.
• Creates and submits an “Open Current” event to open the Current Account.
• If the Boolean on the Set Up event is true, creates and submits an “Open Savings” event.

Note that the callbacks are coded in a class named after the event (SetUp) and that this class extends
(subclasses) “Event”.

OBJECT Customer
 NAME Full Name

INCLUDES Freezing
ATTRIBUTES Full Name: String, Address: String
STATES registered
TRANSITIONS @new*Register=registered,

 @new*Set Up=registered,
 registered*Open Current=registered,
 registered*Open Savings=registered,
 registered*Change Address=registered

EVENT !Set Up
 ATTRIBUTES Customer: Customer, Full Name: String, Address: String,
 Limit: Currency, Savings: Boolean

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 35 of 64

 Figure 47

Note that, when a new event is created by invoking “this.createEvent(“Event Name”)”, attributes
from the source event (this) are transferred by name co-incidence. So it is not, for instance, necessary to
populate the Full Name and Address attributes of Register, or the Limit attribute of Open Current.

Events that are created in callbacks are called Sub Events. Events that are entered at the user interface are
called User Events. Note that Register can be either a Sub Event (if created as a result of a Set Up) or a User
Event (if entered at the user interface).

A class called AcInit has been written to handle the assignment of the Account Number. This is shown in
Figure 48. This code could have been included directly in the SetUp callback, but as it is going to be re-used
later it makes more sense to place it in a separate class.

 Figure 48

Note that the parameter anyThing can be any object. It just provides a instance on which to invoke the
select on Accounts. The result of the select is independent of the object used.

package Bank4;

import com.metamaxim.modelscope.callbacks.*;

public class SetUp extends Event {

 public void handleEvent() {

 Instance myCustomer = this.getInstance("Customer");

 Event register = this.createEvent("Register");
 register.submitToModel();

 Event openCurrent = this.createEvent("Open Current");
 openCurrent.setNewInstance("Account", "Current Account");
 openCurrent.setInstance("Owner", myCustomer);
 openCurrent.setString("Account Number", AcInit.nextAcNo(myCustomer));
 openCurrent.submitToModel();

 if (this.getBoolean("Savings")) {
 Event openSavings = this.createEvent("Open Savings");
 openSavings.setNewInstance("Account", "Savings Account");
 openSavings.setInstance("Owner", myCustomer);
 openSavings.setString("Account Number", AcInit.nextAcNo(myCustomer));
 openSavings.submitToModel();
 }
 }

}

package Bank4;

import com.metamaxim.modelscope.callbacks.*;
import java.text.DecimalFormat;

public class AcInit {

 public static String nextAcNo(Instance anyThing) {
 Instance[] accounts = anyThing.selectInState("Account", "@any");
 return(new DecimalFormat("000").format(accounts.length + 1));
 }

}

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 36 of 64

4.4.3 Attribute Handling Callbacks

ModelScope provides automatic validation that event attributes conform to their declared type (See Section
7). This validation can be supplemented, e.g. to ensure that a non-null string or non-zero numeric has been
entered. Values can also be loaded, overwriting the default initial value and any value that has been loaded by
name co-incidence.

Suppose that the Set Up event has to ensure that a Customer Name and Address are entered, and provide a
default Limit of £250.00.

Revised metadata for Set Up is shown in Figure 49.

 Figure 49

The attributes that have to be validated or given a default value have “!” in front of their names, indicating
that Attribute Handling Callbacks are to be invoked. The callback code is shown in Figure 50.

 Figure 50

To test that Full Name and Address have been entered, a ModelScope supplied validation script
(“WORD_CHAR_RULE”) has been used. The validation scripts available for each value type are given in
Section 7.1).

The code to supply the initial value of the limit has been added to AcInit as shown in Figure 51.

EVENT !Set Up
ATTRIBUTES Customer: Customer, !Full Name: String, !Address: String,
!Limit: Currency, Savings: Boolean

package Bank4;

import com.metamaxim.modelscope.callbacks.*;

public class SetUp extends Event {

 public void setLimit(EventValueAttribute attribute, Instance selected,
 String subscript) {
 attribute.setCurrency(AcInit.defaultLimit());
 }

 public void setFullName(EventValueAttribute attribute, Instance selected,
 String subscript) {
 attribute.setRule("WORD_CHAR_RULE", "Full Name must be supplied");
 }

 public void setAddress(EventValueAttribute attribute, Instance selected,
 String subscript) {
 attribute.setRule("WORD_CHAR_RULE", "Address must be supplied");
 }

 public void handleEvent() {

 As Figure 47.

 }

}

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 37 of 64

 Figure 51

The events Open Current and Open Savings should also set default values for Account Number and Limit.
Figure 52 shows the required metadata and callback code. The only change is the addition of “!” on front of
Account Number and Limit attributes to indicate the use of Attribute handling Callbacks.

 Figure 52

Figure 53 shows the callback class for Open Current. Open Savings has a similar one (not shown here).

 Figure 53

4.5 Bank5
Please refer to the example model Bank5 for illustration of all the ideas and syntax introduced in this section.

4.5.1 Domain Rules and Business Rules

In general, the role of a business application is twofold:
• To mirror accurately the state of the business domain.

package Bank4;

import com.metamaxim.modelscope.callbacks.*;
import java.text.DecimalFormat;

public class AcInit {

 public static String nextAcNo(Instance anyThing) {
 Instance[] accounts = anyThing.selectInState("Account", "@any");
 return(new DecimalFormat("000").format(accounts.length + 1));
 }

 public static int defaultLimit() {
 return 25000;
 }

}

EVENT Open Current
 ATTRIBUTES Account: Current Account, !Account Number: String,
 Owner: Customer, !Limit: Currency

EVENT Open Savings
 ATTRIBUTES Account: Savings Account, !Account Number: String,
 Owner: Customer

package Bank4;

import com.metamaxim.modelscope.callbacks.*;

public class OpenCurrent extends Event {

 public void setAccountNumber(EventValueAttribute attribute,
 Instance selected, String subscript) {
 attribute.setString(AcInit.nextAcNo(selected));
 }

 public void setLimit(EventValueAttribute attribute, Instance selected,
 String subscript) {
 attribute.setCurrency(AcInit.defaultLimit());
 }

}

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 38 of 64

• To influence the behaviour of the domain to adhere to patterns of events and states that accord with
the aims of the business.

In order to reflect these two roles, ModelScope models distinguish between behaviour rules that are inherent
in the domain (Domain Rules) and behaviour rules that represent business requirements and policies (Business
Rules).

Domain Rules are about the first role: they ensure that the behaviour of the model accurately matches the
behaviour of the modelled domain by guaranteeing that the model cannot enter states that have no counterpart
in reality. Business Rules are about the second role: they are about influencing the behaviour of the domain to
favour or disfavour particular events for business reasons.

Business Rules, like traffic speed limits, are in general not perfectly enforceable. In order to fulfil the second
role, a business application must exert appropriate influence to ensure that business rules are followed, but its
obligations under the first role mean that it must be able to accommodate violation. Business Rules are
therefore weaker than Domain Rules in the following sense: behaviour specified as Domain Rules cannot be
violated, but the observance of Business Rules is at the users’ discretion.

4.5.2 Business Rule Modelling

ModelScope distinguishes Domain Rules from Business Rules by giving each Behaviour in a model a TYPE.
There are three types of Behaviour: Essential, Allowed and Desired. The first type is used for Domain Rules
and the second two are used for Business Rules, as shown in Table 8.

Table 8

BEHAVIOUR
TYPE

DESCRIPTION

FOR MODELLING DOMAIN RULES

ESSENTIAL Behaviour inherent to the domain. This is about what CAN happen. Violation is
meaningless.

FOR MODELLING BUSINESS RULES

ALLOWED
There are circumstances under which, because of a business rule or policy, an event is
not supposed to take place. This is about what MAY (or is ALLOWED to) happen.
Violation is not meaningless, but is discouraged.

DESIRED
There are circumstances under which, because of a business rule or policy, a certain
event is required or desired. This is about what SHOULD (or is DESIRED to) happen.
Violation is not meaningless, but not encouraged.

If no type is specified, the default is ESSENTIAL. As no types have been specified in the Bank model, so far,
all Behaviours have defaulted to this type.

In Behaviours that define Domain Rules, whether an event is in context or not in context determines whether
or not the event can or cannot take place at all. In Behaviours that define Business Rules, whether an event is
in context or not in context determine whether it is allowed or not allowed and or desired or not desired as
shown in Table 9.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 39 of 64

Table 9
BEHAVIOUR

TYPE
SEMANTICS

ALLOWED • Events in context are ALLOWED
• Events not in context are NOT ALLOWED

DESIRED • Events in context are DESIRED
• Events not in context are NOT DESIRED

ModelScope uses colour to provide feedback at the user interface, using the scheme shown in Figure 54, to
show whether an event is in context or not for Business Rule Behaviours.

“Allowed and not desired” is the vanilla case and such events are not coloured. Other cases are coloured red,
green or yellow as indicated.

 Figure 54

ModelScope does not let Business Rules Behaviours do any updating. ModelScope enforces this discipline by
checking that Business Rules Behaviours (i.e. those with type ALLOWED or DESIRED):

• Have a derived state.
• Have only derived attributes.
• Do not have any Event Processing Callbacks on their transitions.

The reason for this discipline is that Business Rules Behaviours are purely advisory. In general, update
processing (changing attribute or state values) only takes place when a transition fires. If a Business Rule
Behaviour were to perform an update (e.g. by updating an attribute or event driven state), the update would
only take place if the transition fires and this requires that the event is in context, i.e. allowed or desired. This
would give the Business Rule more than just advisory significance.

Finally, events that appear in the transitions of Business Rule Behaviours do not contribute to the Event
Vocabulary of the object. To be included in the Event Vocabulary, an event must appear in at least one
Domain Rule (type ESSENTIAL) Behaviour.

4.5.3 Allowed Behaviour

The earlier Close Control (see Figure 19) is now amended as closing an Account that is overdrawn, although
against Bank policy, does happen under some circumstances.

ALLOWED AND NOT DESIRED

DESIRED
NOT

ALLOWED
DESIRED
BUT NOT

ALLOWED

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 40 of 64

The Close Control Behaviour already obeys the rules described above, so the amendment is simply to add the
type entry, as shown in Figure 55.

 Figure 55

This change specifies that the Close event is allowed (because it is in context for the Close Control
Behaviour) when the Account is in credit. If the Account is overdrawn, the Close is not allowed and will
appear in red at the user interface. It will still, however, be possible to perform the event.

4.5.4 Post-State Constraints in Business Rules

It is possible to use post-state constraints in Business Rules. For instance the Limit Control Behaviour could
be made a Business Rule as shown in Figure 56.

 Figure 56

This Behaviour uses a post-state constraint to specify that a withdraw is only allowed if it leaves the Account
within its credit limit. As previously described (Section 4.3.2), ModelScope reports on the constraint
violations after it has finished processing the event. Changing this Behaviour from a Domain Rule into a
Business Rule means that, instead of a failing an event that violates the constraint, ModelScope presents the
user with a choice of either failing the event or letting it succeed.

When a post-state constraint is used in a Business Rule, ModelScope does not know in advance of the
submission of the event that it violates the rule, so cannot colour the event in the user interface as described in
Figure 54.

4.5.5 Desired Behaviour

Before a Customer leaves the Bank, all of their Accounts must be closed. This means that when a Customer
notifies that Bank of their intention to leave, close becomes a desired event for the Accounts they own.

Customer now has the state transition diagram shown in Figure 57.

 Figure 57

The Customer metadata (see Figure 46) is now amended as shown in Figure 58.

BEHAVIOUR !Limit Control
TYPE ALLOWED
STATES within limit, over limit
TRANSITIONS @any*Withdraw=within limit

BEHAVIOUR !Close Control
TYPE ALLOWED
STATES in credit, overdrawn
TRANSITIONS in credit*Close=@any

Change Address Change Address Change Address
CUSTOMER

Notify Leave Leave
registered left pending

leave

Open
Current

Open
Savings

Set Up

Register

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 41 of 64

 Figure 58

Note that the use of @any and @old to represent the three transitions for Change Address in Figure 57 as a
single transition in the metadata. @old means that the post-state is the same as the pre-state.

A new Behaviour is needed to ensure that close becomes a desired event on Account when the Customer
enters the pending leave state. The state transition diagram is shown in Figure 59.

 Figure 59

The metadata for this is shown in Figure 60.

 Figure 60

The callback code for the state is shown in Figure 61.

BEHAVIOUR Account
INCLUDES Freezing, Close Control, Freeze Control, Close Required
ATTRIBUTES Account Number: Integer, Owner: Customer, Balance: Currency
STATES open, closed
TRANSITIONS @new*Open=active,
 active*Close=closed,
 active*!Cash Deposit=active,
 active*!Cash Withdraw=active,
 active*!Transfer[Source]=active,
 active*!Transfer[Target]=active

BEHAVIOUR !Close Required
TYPE DESIRED
STATES leave requested, leave not requested
TRANSITIONS leave requested*Close=@any

OBJECT Customer
 NAME Full Name
 INCLUDES Freezing
 ATTRIBUTES Full Name: String, Address: String, !Total Balance: Currency
 STATES registered, pending leave, left
 TRANSITIONS @new*Register=registered,
 @new*Set Up=registered,
 registered*Open Current=registered,
 registered*Open Savings=registered,
 registered*Notify Leave=pending leave,
 pending leave*Leave=left,
 @any*Change Address=@old

CLOSE REQUIRED

Close
leave

requested
leave not
requested

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 42 of 64

 Figure 61

Note that if a Customer has notified the Bank of their intention to leave but has an Account that is overdrawn,
the Close event is not allowed according to Close Control, but desired according to Close Required. This will
cause the event to appear in yellow in the user interface, as described in Figure 47.

Business Rules that specify desired events have a close correspondence with workflow. Typically, in a
production application, a desired event will cause a task to be placed on a workflow queue.

package Bank5;

import com.metamaxim.modelscope.callbacks.*;

public class CloseRequired extends Behaviour {

public String getState() {
 String custState = this.getInstance("Owner").getState("Customer");
 if (custState.equals("pending leave"))
 return "leave requested";
 else return "leave not requested";
 }

}

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 43 of 64

5 Metadata Conventions and Concepts

5.1 Metadata Structure
Metadata is specified using Entries and Sub-Entries.

Entries introduce new metadata elements of the model. Entries start with one of the following keywords
shown in Figure 62.

 Figure 62

Sub-entries add definition to entries. For instance, OBJECT has the sub-entries shown in Figure 63.

 Figure 63

The sub-entries for each entry are listed in Section 6.

Each entry and sub-entry must start on a new line.

Entries may appear in any order in the Metadata file. Sub-entries always refer to the preceding entry.

Some sub-entries are optional – you only add them if they are needed – see Section 6.

Sub-entries may appear in any order following an entry.

5.2 Metadata Lexical Rules
All names in metadata must be alphanumeric and can have embedded spaces. ModelScope metadata is case-
sensitive in handling names.

ModelScope is not case sensitive in handling keywords.

5.3 Conversion of Metadata names to Java names
Where metadata names are also used in Java callback code (Model_Name, Event_Names, Behaviour_Names
and Attribute_Names), the spaces have to removed or replaced. The default is to remove spaces.

An entry in the ModelScope parameter file can be used to specify a replacement character (e.g. “_”) if this is
preferred. The form of the entry is:

SPACE_REPLACEMENT_CHAR=_

MODEL . . .
OBJECT . . .
BEHAVIOUR . . .
EVENT . . .
GENERIC . . .
ACTOR . . .

OBJECT . . .
TYPE . . .
NAME . . .
INCLUDES . . .
ATTRIBUTES . . .
STATES . . .
TRANSITIONS . . .

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 44 of 64

For more information about parameters, see the ModelScope “Getting Started” Guide.

5.4 Invisible Behaviour Attributes
Enclosing the metadata for an attribute and its type in parentheses, thus:

(Full Name: String)

in the definition of the attributes of an Object or Behaviour makes the attribute invisible at the user interface.
Apart from being invisible, these attributes are treated exactly like visible attributes. All data transfer,
callback invocation etc. is exactly the same.

5.5 State Specifiers
State specifiers are special symbols that are used to specify certain states of a behaviour. The state specifers
are shown in Table 10.

 Table 10

VALUE MEANING

@new The initial state of a behaviour, before any transition has taken place.

@any Any state of the behaviour, apart from @new.

@old Used as a post-state in a transition to indicate that the post-state is the same as the pre-state.

State specifiers are used in transitions, as described in Section 6.2.7.

State specifiers may also be used in callback code when selecting all instances that are in a certain state, using
the selectInState function. This is described in Section 10.5.

5.6 Seed Instances
For each type of object defined in a model, ModelScope creates a single Seed pseudo-instance. These appear
in the instance list in the user interface as:

(new Behaviour_Name)

and are used to create new instances of objects. The events that are in context for a seed are the creation
events for the object.

A seed has the full set of behaviours appropriate to its type. All non-derived attributes in a seed are given the
default value of their data type (see Section 7.1). Behaviours in a seed that have event driven states are in the
state @new.

Callbacks work within seeds just as they do within normal instances.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 45 of 64

6 Metadata Reference
This Section explains the syntax of ModelScope metadata.

6.1 Model

6.1.1 MODEL

Purpose: To name a Model. This name must the same as the Package name for the Callbacks associated
with the Metadata.

Type: Entry

Format: MODEL Model_Name

Variations: None.

Rules: A Model File must have exactly one MODEL entry and it must be the first entry in the file.

6.2 Object and Behaviour

6.2.1 OBJECT and BEHAVIOUR

Purpose: To declare an Object or Behaviour.

Note: An Object is a special Behaviour. Object is used as the owning (top) Behaviour of an assembly

of Behaviours that together model an object.

Type: Entry

Format: OBJECT Behaviour_Name
 BEHAVIOUR Behaviour_Name

Variations: If Behaviour_Name is prefixed by “!”, the Behaviour has a Derived State Callback.

Rules: Behaviour_Name must be unique in the Behaviour/Event name-space.

6.2.2 NAME

Purpose: To specify which Attribute will be used to identify instances in the User Interface.

Type: Sub-entry

Format: NAME Attribute_Name

Variations: If the Attribute_Name is not unique within the Object and its directly and indirectly included

Behaviours, the form Behaviour_Name.Attribute_Name can be used to disambiguate.
Behaviour_Name is the Object or Behaviour owning the attribute.

Rules: Required as a sub-entry for an OBJECT. Not allowed as a sub-entry for BEHAVIOUR.
 Attribute_Name can be an attribute declared in the ATTRIBUTES of this Object or of any

Behaviour included directly or indirectly by this Object. It may be either a stored or a derived
attribute.

6.2.3 TYPE

Purpose: To specify whether the Behaviour represents behaviour whose observance is forced by

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 46 of 64

ModelScope, or behaviour whose observance is at the User’s discretion.

Type: Sub-entry

Format: TYPE Behaviour_Type

Variations: None

Rules: Behaviour_Type must be one of ESSENTIAL, ALLOWED or DESIRED.

If the sub-entry is omitted, ESSENTIAL is assumed.
 A Behaviour that is not ESSENTIAL must have a derived state, and cannot have stored (non-

derived) attributes or any Event Processing Callbacks.

6.2.4 INCLUDES

Purpose: To define the structure of Behaviour composition.

Type: Sub-entry

Format: INCLUDES Behaviour_Name , Behaviour_Name , …

Variations: None

Rules: A Behaviour named in the includes sub-entry must not be an Object.
 A Behaviour cannot include itself either directly or indirectly.
 A Behaviour may not appear more than once in an includes structure.

6.2.5 ATTRIBUTES

Purpose: To declare the Attributes of the Behaviour.

Type: Sub-entry

Format: ATTRIBUTES Attribute_Name : Type , Attribute_Name : Type , …

Variations: If Attribute_Name is prefixed by “!” the attribute has a Derived Attribute Callback.

 Parentheses used around and attribute and its type
 (Attribute_Name : Type)
 indicate that the attribute is invisible – i.e. not displayed at the user interface. Apart from not

being displayed, invisible attributes are otherwise treated by ModelScope exactly like visible
attributes.

Rules: Attribute_Name must be unique within the Object or Behaviour.

 Type must be either an built-in type (see Section 7) for a value atribute, or a Behaviour_Name

for a reference attribute.

6.2.6 STATES

Purpose: To declare the possible states of the Behaviour.

Type: Sub-entry

Format: STATES State_Name , State_Name , State_Name , …

Variations: None

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 47 of 64

Rules: The state specifiers (@new, @any, @old) are not declared.

6.2.7 TRANSITIONS

Purpose: To specify the transitions of the Behaviour.

Type: Sub-entry

Format: TRANSITIONS Transition , Transition , Transition , …

 The form of a Transition is:

 Pre_State * Event_Specifier = Post_State

 Pre_State and Post_State are either a State_Name declared in the STATES sub-entry, or one of

the state specifiers @new, @any, @old.

 Event_Specifier is either an Event_Name from an EVENT entry, or a Generic_Name from a

GENERIC entry.

Variations: The Event_Specifier can be subscripted. In this case it takes the form:

 Event_Name[Attribute_Name] or Generic_Name[Attribute_Name]

 If the Event_Specifier is pre-fixed by “!” an Event Processing Callback is invoked when the

transition fires. An Event Processing Callback may be used whether the Event_Specifier is
either a (possibly subscripted) Event_Name or Generic_Name.

Rules: @old can only be used as a Post_State

 If the Behaviour is event driven (no “!” prefixing the Behaviour_Name in the OBJECT or

BEHAVIOUR entry):
• There must be at least one Transition with a Pre_State of @new.
• @any can only be used as a Pre_State.

 If the Behaviour has a derived state (a “!” prefixing the Behaviour_Name in the OBJECT or

BEHAVIOUR entry):
• @new cannot be used.
• @any can be used as a Pre_State or a Post_State.

 The set of Transitions in a Behaviour must be deterministic – i.e. no more than one transition

can fire for a given event from a given state.

 The Events used in Transitions must have type INTERNAL.

6.3 Event

6.3.1 EVENT

Purpose: To declare an Event.

Type: Entry

Format: EVENT Event_Name

Variations: If Event_Name is prefixed by !, the Event has an Event Handling Callback.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 48 of 64

Rules: Event_Name must be unique in the Behaviour/Event name-space.

 Only INTERNAL Events (see below) can use an Event Handling Callback.

6.3.2 TYPE

Purpose: To specify whether the Event can be used in Behaviour transitions, or is purely for output.

Type: Sub-entry

Format: TYPE Event_Type

Variations: None

Rules: Event_Type must be one of INTERNAL or EXTERNAL.

If the sub-entry is omitted, INTERNAL is assumed.
 An Event that is EXTERNAL cannot be used in Transitions, or included in an Actor definition.

6.3.3 ATTRIBUTES

Purpose: To declare the Attributes of the Event.

Type: Sub-entry

Format: ATTRIBUTES Attribute_Name : Type , Attribute_Name : Type , …

Variations: If Attribute_Name is prefixed by “!” the attribute has an Attribute Handling Callback.

Rules: Attribute_Name must be unique within the Event.

 Type must be either an built-in type (see Section 7) for a value attribute, or a Behaviour_Name

for a reference attribute.

 Only INTERNAL Events can use Attribute Handling Callbacks.

6.4 Generic

6.4.1 GENERIC

Purpose: To declare a Generic.

Type: Entry

Format: GENERIC Generic_Name

Variations: None

Rules: Generic_Name must be unique in the Behaviour/Event name-space.

6.4.2 MATCHES

Purpose: To specify the membership of a Generic.

Type: Sub-entry

Format: MATCHES Event_Specifier , Event_Specifier , Event_Specifier , …

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 49 of 64

 Event_Specifier is either an Event_Name from an EVENT entry, or a Generic_Name from a
GENERIC entry.

Variations: The Event_Specifier can be subscripted. In this case it takes the form

 Event_Name[Attribute_Name] or Generic_Name[Attribute_Name]

Rules: A Generic cannot have itself as a member, directly or indirectly.

 Subscripted and unsubscripted use of the same Event cannot be mixed in a Generic, either

directly or indirectly.

 An Event that has type EXTERNAL cannot be in the membership of a Generic.

6.5 Actor

6.5.1 ACTOR

Purpose: To declare an Actor.

Type: Entry

Format: ACTOR Actor_Name

Variations: The special Actor_Name “All” (ACTOR All) creates an Actor in which all Objects and Events

are visible. This Actor has no BEHAVIOURS or EVENTS sub-entries.

 If no Actor is specified, ModelScope creates an Actor All.

Rules: None

6.5.2 BEHAVIOURS

Purpose: To specify the Behaviours in a Actor.

Type: Sub-entry

Format: BEHAVIOURS Behaviour_Name , Behaviour_Name , Behaviour_Name , …

Variations: None

Rules: None

6.5.3 EVENTS

Purpose: To specify the Events in a Actor.

Type: Sub-entry

Format: EVENTS Event_Name , Event_Name , Event_Name , …

Variations: None

Rules: The events must all be type EXTERNAL.
 Generics cannot be used.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 50 of 64

7 Built in Types
This section describes ModelScope’s built-in attribute types. For each, the following information is given:

Representation: How values are held internally by ModelScope. This is the Java type to use if you wish

to manipulate values in callback code.

Initialisation: What initial value is given by ModelScope to Event and Behaviour attributes before any

value is loaded, either by name co-incidence transfer or callback code.

Validation: The default validation of Event attributes performed by Java at the Post-presentation

Stage of the Event Processing Cycle.

Validation Scripts: JavaScript validation scripts that can be applied to an attribute in Attribute Handling

Callbacks to supplement the standard validation.

7.1 Value Types

7.1.1 Boolean

Representation: boolean

Initialisation: false

Validation: true or false

Validation Scripts: None

7.1.2 Currency

Representation: int (thus 123.45 is held as 12345).

Initialisation: 0 (representing 0.00)

Validation: integer (zero allowed)

Validation Scripts: POSITIVE_CURRENCY_RULE Value is a positive currency.
 NON_NEGATIVE_CURRENCY_RULE Value is zero or a positive currency.

7.1.3 Date

Representation: Date

Initialisation: today

Validation: valid date

Validation Scripts: None

7.1.4 Integer

Representation: int

Initialisation: 0

Validation: integer (zero allowed)

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 51 of 64

Validation Scripts: POSITIVE_INTEGER_RULE Value is a positive integer.
 NON_NEGATIVE_INTEGER_RULE Value is zero or a positive integer.

7.1.5 String

Representation: String

Initialisation: null string

Validation: not all spaces (null string allowed)

Validation Scripts: WORD_CHAR_RULE Value contains at least one alphanumeric character.
 NOT_BLANK_RULE Value isn’t empty or solely white space characters.

7.2 Reference Type

Representation: object pointer (representation internal to ModelScope)

Initialisation: null pointer (representation internal to ModelScope)

Validation: valid pointer, not the null pointer.

Validation Scripts: N/A

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 52 of 64

8 Event Processing Cycle

8.1 User Events

Table 11 describes the Event Processing Cycle for events entered by the user at the user interface.

Table 11

STAGE DESCRIPTION AUTOMATIC PROCESSING
Pre-presentation After the user has chosen an object

and an event at the user interface,
but before the event attribute entry
windows are displayed.

ModelScope populates the event attributes from the selected object by
name co-incidence.

ModelScope calls Attribute Handling Callbacks for each Attribute
that has an “!” in front of its name in the ATTRIBUTES metadata for
the Event. See 10.3.2.

Presentation On completion of the Pre-
presentation Stage, the event
attributes are presented to the user
at the user interface. The user can
enter values, altering or over-
writing those loaded automatically
at the Pre-presentation Stage.

N/A

Post-
presentation

After the user has entered values
for event attributes and clicked the
button to submit the event.

ModelScope checks that the content of each attribute conforms to the
validation rules given in Section 7.

ModelScope checks that attributes pass any supplemental attribute
validation rules set by Attribute Handling Callbacks.

If any check fails, a message is presented at the user interface, and no
further processing of the event takes place.
For Events with no “!” in front of the Event_Name in the EVENT
metadata.

ModelScope presents the event to each object addressed by the event.
For each Behaviour of each object where the event fires a transition,
ModelScope:

• Populates the Behaviour attributes from the event attributes by

name co-incidence.
• If the Event_Specifier has as “!” in front it in the TRANSITIONS

metadata, calls the Event Processing Callback. See 10.4.4.
• If the Behaviour has an event driven state, updates the state to the

transition post-state.

After all Behaviours affected by the event have been updated,
ModelScope checks whether any post-state constraints have been
violated. Only transitions that fire are checked. Reporting of
violations is done at the Pre-Return to UI Stage.

Update After all the checks in the Post-
presentation Stage have been
performed, and only if they all
pass.

For Events with “!” in front of the Event_Name in the EVENT
metadata

ModelScope passes the event to the Event Handling Callback. See
10.3.3.

Continued on next page.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 53 of 64

Pre-Return to
UI

After the Updating Stage has been
completed, including processing of
any events created and submitted
to the model by callback code, and
control is ready to pass back to the
user interface.

ModelScope reports on any Post-State Constraints that have been
violated.

If none have been violated, the event succeeds.

If one or more constraints in Behaviours with type ESSENTIAL have
been violated, the current User Event is rolled-back.

If the only violated constraints are in Behaviours with types
ALLOWED and DESIRED, ModelScope presents a dialog at the user
interface allowing the user to chose whether the event is to succeed or
fail. If fail is chosen, the current User Event is rolled-back.

8.2 Sub Events

Table 12 describes the event processing cycle for Sub Events, i.e. events created and submitted to the model
from Event Handling callbacks.

Table 12

STAGE DESCRIPTION AUTOMATIC PROCESSING
Pre-Update After the callback code has

populated the event attributes
and submitted the event to the
model.

ModelScope checks that the content of each attribute conforms to the
validation rules given in Section 7.

ModelScope checks that the event is in context for all the objects to
which it is addressed by its reference attributes.

If any check fails a run-time error is raised and the current User Event is
rolled-back.

Update After all the checks in the Pre-
update Stage have been
performed, and only if they all
pass.

Same as Update Processing in Table 11 for Events with no “!” in front of
the Event_Name in the EVENT metadata.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 54 of 64

9 Callback Policy Rules
ModelScope enforces some rules about what may be done in each type of callback. These rules are called
Callback Policy Rules and are required for two reasons:

1. To ensure that models adhere to the discipline of encapsulation. This makes it much easier to
understand what a model is doing and to keep its complexity under control

2. To guard against callbacks that attempt to perform actions whose effect is unspecified and which
would therefore cause indeterminate results or cause ModelScope to fail.

In summary, these rules are:

1. Rules ensuring encapsulation:

• A Behaviour Attribute may only be updated by the Behaviour to which it belongs.

2. Rules guarding against unspecified effects:
• Derived Attribute and Derived State callbacks cannot have any “side-effects”. That is to say, they

may (and must) return a value, but may not perform any updates.
• Once an Event is being processed, i.e. being used to update objects, it cannot be altered.
• Only one Event may be updating objects at a time. In other words, all objects that are affected by an

event must be completely updated before any updating is done for another event.

The last of these requires a little more explanation.

ModelScope can be thought of as consisting of three layers, as shown in Figure 64.

 Figure 64

As shown in Figure 64, when a User Event is entered at the user interface, it is either:
A. Delivered directly to the Objects Layer or,
B. Delivered to the Event Handling Layer.

In the second case, the Event Handling Layer may, in its turn, deliver Sub Events to the Objects Layer.

ModelScope ensures that it is not possible for callbacks within the Objects Layer (i.e. Derived Attribute,
Derived State and Event Processing callbacks) to create and submit further events. – only the User Interface

2. Event Handling Layer Event Handling Callback

User
Event

Object
Object

Object

User
Event

Sub
Event

Sub
Event

BA

1. User Interface Layer

3. Objects Layer

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 55 of 64

and Event Handling Layers can submit an event to the model. Because the Objects Layer must complete and
relinquish control before another Event is delivered to it, and it will only relinquish control when it is finished
with an event and quiescent, only one event is ever in process at a time.

Details of the Callback Policy Rules can be found in Section 10.5, in the last column of each table.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 56 of 64

10 Callback Reference

10.1 Callback Signalling
ModelScope callbacks are fragments of Java code that supplement the metadata. The use of a callback is
signalled in the metadata by using a “!”.

Callbacks are of two types:
• Event Class Callbacks are signalled in the EVENT metadata and the Java code is placed in a Class that

has the same name as the Event.
• Behaviour Class Callbacks are signalled in the OBJECT or BEHAVIOUR metadata and the Java code is

placed in a Class that has the same name as the Behaviour.

Table 13 lists the different kinds of callback, when each is invoked, and how each is signalled in the
metadata.

Table 13

TYPE OF
CALLBACK

WHEN
INVOKED

(See Section 8)

HOW SIGNALLED WITH “!”
IN THE METADATA

REFERENCE

EVENT CLASS CALLBACKS

Attribute Handling Pre-presentation Prefix to the Attribute_Name in the
EVENT definition.

10.3.2

Event Handling Update Prefix to the Event_Name in the
EVENT definition.

10.3.3

BEHAVIOUR CLASS CALLBACKS

Derived Attribute On-the-fly Prefix to the Attribute name in the
OBJECT or BEHAVIOUR definition.

10.4.2

Derived State On-the-fly Prefix to the Behaviour name in the
OBJECT or BEHAVIOUR definition.

10.4.3

Event Processing Update Prefix to the Event_Name in a
TRANSITION entry of the OBJECT or
BEHAVIOUR definition .

10.4.4

10.2 ModelScope Callback Types
The ModelScope callback language is an extension of Java provided by four Java types and methods on these
types. The Java types are listed in Table 14.

Table 14

JAVA TYPE DESCRIPTION
Event An instance of an event, either created by ModelScope when the user submits

an event from the user interface, or created in callback code using
createNewEvent.

Instance An instance of an object or a seed pseudo-instance. Conceptually, an Instance
comprises all the behaviour instances belonging to the object.

EventValueAttribute A value attribute of an event instance. (Used to access the attribute in an
Attribute Handling callback).

EventReferenceAttribute A reference attribute of an event instance. (Used to access the attribute in an
Attribute Handling callback).

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 57 of 64

10.3 Event Class Callbacks

10.3.1 Class Structure

Event Class Callbacks are coded as functions in a class named after the event.

The class name is constructed from the Event_Name in the metadata by removing or replacing spaces.

The structure of the class is shown in Figure 65.

 Figure 65

10.3.2 Attribute Handling (Value and Reference)

These callbacks are invoked after the user has selected an instance and an event, but prior to display of data
capture windows for the event.

For value attributes, the callback can set initial values (which override any value that might be loaded from
the selected instance by name-co-incidence) and/or associate a JavaScipt rule with the attribute to be used to
validate the value entered.

For reference attributes, the callback can refine the list of candidates to be presented at the user interface,
and/or arrange that a particular value appears at the top of the presented list as the default choice.
The parameters are shown in Table 15.

// mmmmm is the Model_Name with the spaces removed or replaced.
package mmmmm;

import com.metamaxim.modelscope.callbacks.*;

// eeeee is the Event_Name with spaces removed or replaced.
public class eeeee extends Event {

 // Attribute Handling for Value Attributes.
 // You can have a number of these for different value attributes
 // in the event. aaaaa is the Attribute_Name with spaces removed or
 // replaced.
 public void setaaaaa (EventValueAttribute attribute,
 Instance selected, String subscript) {
 // Function code.
 }

 // Attribute Handling for Reference Attributes.
 // You can have a number of these for different reference attributes
 // in the event. aaaaa is the Attribute_Name with spaces remove or replaced.
 public void setaaaaa (EventReferenceAttribute candidates,
 Instance selected, String subscript) {
 // Function code.
 }

 // Event Handling.
 // You can have at most one of these.
 public void handleEvent() {
 // Function code.
 }

}

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 58 of 64

 Table 15
PARAMETER DESCRIPTION

attribute (for value attributes) The event attribute.

candidates (for reference attributes) The set of instances for which the selected event is in
context.

selected The instance selected by the user.

subscript The event reference attribute that corresponds to the
instance selected by the user.

Note that there is always a single attribute of the event that corresponds to the instance selected by the user. If
there is an Attribute Handling callback associated with this attribute it will not be called, as this attribute
already has a value.

10.3.3 Event Handling

This callback is invoked in two ways:
• For a User Event, immediately after the user has entered data into the event and submitted it.
• By using submitToCallback() on a Sub Event.

The callback can:
• Perform further validation on the event – for instance, cross-field checking.
• Change the event attribute values entered at the user interface.
• Create internal events (Sub Events), populate their attributes, and submit them to further callbacks or to

the model.
• Create external events and write them to the Log.
• Cancel the current User Event using rollback().

10.4 Behaviour Class Callbacks

10.4.1 Class Structure

Behaviour Class Callbacks are coded as functions in a class named after the object or behaviour.

The class name is constructed from the Behaviour_Name in the metadata by removing spaces.

The structure of the class is shown in Figure 66.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 59 of 64

 Figure 66

10.4.2 Derived Attribute (Value and Reference)

These callbacks are invoked on-the-fly to calculate and return the value of a derived attribute.
The type of the returned value must match the type of the attribute.

10.4.3 Derived State

This callback is invoked on-the-fly to calculate and return the value of a derived state.
Only the string values defined in the STATES sub-entry for the Object or Behaviour are allowed as return
values.

10.4.4 Event Processing

These callbacks are called when a transition fires in a behaviour.

The callback can:
• Retrieve attribute values from the event being processed.
• Update attribute values of this behaviour.
• Create external events and write them to the Log or submit them to a callback.
• Cancel the current User Event using rollback().

The parameters are listed in Table 16.

// mmmmm is the Model_Name with the spaces removed or replaced.
package mmmmm;

import com.metamaxim.modelscope.callbacks.*;

// bbbbb is the Behaviour_Name with spaces removed or replaced.
public class bbbbb extends Behaviour {

 // Derived Value Attribute.
 // You can have a number of these for different attributes in the behaviour.
 // aaaaa is the Attribute_Name with spaces removed or replaced.
 // ttttt is the type of the Java representation of the attribute (boolean,
 // date, int, String). See Section 7.1.
 public ttttt getaaaaa () {
 // Function code.
 }

 // Derived Reference Attribute.
 // You can have a number of these for different attributes in the behaviour.
 // aaaaa is the Attribute_Name with spaces removed or replaced.
 public Instance getaaaaa () {
 // Function code.
 }

 // Derived State.
 // You can have at most one of these.
 public String getState () {
 // Function code.
 }

 // Event Processing.
 // You can have a number of these for different transitions in the
 // behaviour.
 // eeee is the Event_Name or Generic_Name with spaces removed or replaced.
 public void processeeeee (Event event, String subscript) {
 // Function code.
 }
}

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 60 of 64

 Table 16

PARAMETER DESCRIPTION
event The event currently being processed.

subscript The event reference attribute that addressed the event to this
behaviour.

10.5 Language Reference
This Section provides a reference for the Callback Language.

Some of the methods in the language have type-specific variants. For instance, for retrieving the value of the
attribute of an event, there are methods to be used according to the type of the attribute whose value is being
obtained:

• getBoolean(“Attribute_Name”)
• getCurrency(“Attribute_Name”)
• getDate(“Attribute_Name”)
• getInteger(“Attribute_Name”)
• getString(“Attribute_Name”)

Rather than spell out each variant, the short-hand get* has been used.

Some methods have an optional parameter. This is indicated by showing the optional parameter in
parentheses. Where a method has an optional parameter, ModelScope has two versions of the method with
different signatures, one with the optional parameter and one without.

Note that not all methods are usable in all contexts. The last column of the tables specify policy rules about
the valid use of each method, see Section 9. If these rules are not followed, ModelScope generates a run-time
error.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 61 of 64

10.5.1 Methods of Event

METHOD PARAMETERS DESCRIPTION N
O
T
E
S

ALLOWED
USAGE

(CALLBACK
POLICY RULES)

createEvent “Event_Name” Returns a new event instance
of the type specified by
Event_Name. The attributes
of the created event are
populated from this event by
name and type co-incidence.

 Event Handling
Event Processing

get* “Attribute_Name” Returns the content of the
specified value attribute in
this event.

1 Event Handling
Event Processing

getInstance

“Attribute_Name” Returns the content (an
Instance) of the specified
reference attribute in this
event.

 Event Handling
Event Processing

getEventType Returns the type (a String) of
the event.

2 Unrestricted

log Writes this event out to the
Log

 Event Handling
Event Processing

rollback

“Reason” Causes the current user event
to be rolled-back. The
Reason is shown in the Log.

3 Event Handling
Event Processing

set*

“Attribute_Name”
Value

Sets the content of the
specified value attribute of
this event to Value

4 Event Handling
Event Processing (not
allowed for the Event
currently being processed)

setInstance

“Attribute_Name”
Instance

Sets the content of the
specified reference attribute
of this event to Instance.

 Event Handling
Event Processing (not
allowed for the Event
currently being processed)

setNewInstance

“Attribute_Name”
“Behaviour_Name”

Sets the content of the
specified attribute of this
event to a new instance of the
object specified by
Behaviour_Name.

 Event Handling
Event Processing (not
allowed for the Event
currently being processed)

submitToCallback Invokes the Callback
function handleEvent on this
event.

 Event Handling
Event Processing

submitToModel Submits this event to the
model – exactly as if the
event had been submitted
directly from the User
Interface.

 Event Handling

Notes
1. The type of the value returned is the Java representation of the attribute. See Section 7.1.
2. Useful when an Event Processing callback is associated with a Generic, to determine the event that has matched the

Generic.
3. It is always the user event that is rolled back, even if invoked on a sub event.
4. The Value parameter must conform to the Java representation of the attribute. See Section 7.1.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 62 of 64

10.5.2 Methods of Instance

METHOD PARAMETERS DESCRIPTION N
O
T
E
S

ALLOWED
USAGE

(CALLBACK
POLICY RULES)

get*

(“Behaviour_Name”)
“Attribute_Name”

Returns the content of the
specified value attribute in
this instance.

1
3

Unrestricted

getInstance

(“Behaviour_Name”)
“Attribute_Name”

Returns the content (an
Instance) of the specified
reference attribute in this
instance.

1 Unrestricted

getNullInstance Returns a null instance. Unrestricted

getObjectType Returns the name (a String)
of the object.

 Unrestricted

getState

“Behaviour_Name” Returns the state (a String) of
the specified behaviour
within this instance

 Unrestricted

isEqual

Instance Returns true if this is the
same instance as Instance.

4 Unrestricted

isNull Returns true if this is a null
instance.

 Unrestricted

isSeed Returns true if this is a seed
pseudo-instance.

5 Unrestricted

selectByRef

“Behaviour_Name”
“Attribute_Name”

Returns an array if instances,
all of which include the
specified behaviour and have
the specified attribute
referencing this.

6 Unrestricted

selectInContext

“Behaviour_Name”
“Event_Name”
(“Subscript”)

Returns an array if instances,
all of which include the
specified behaviour and have
the specified event with the
specified subscript in
context. The last parameter is
optional. If omitted, the event
can be in context for any
subscript value. See Notes.

7
8

Unrestricted

selectInState

“Behaviour_Name”
“State”

Returns an array if instances,
all of which include the
specified behaviour in the
specified state.

7
9

Unrestricted

set* (“Behaviour_Name”)
“Attribute_Name”
Value

Sets the content of the
specified value attribute of
this instance to Value.

1
2
10

Event Processing (allowed
for Attributes of current
Behaviour only)

setInstance

(“Behaviour_Name”)
“Attribute_Name”
Instance

Sets the content of the
specified reference attribute
of this instance to Instance.

1
2

Event Processing (allowed
for Attributes of current
Behaviour only)

setNull

(“Behaviour_Name”)
“Attribute_Name”

Sets the content of the
specified reference attribute
of this instance to a null
instance.

1
2

Event Processing (allowed
for Attributes of current
Behaviour only)

Notes
1. The first parameter is optional, and only needed if this instance has more than one attribute named Attibute_Name.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 63 of 64

2. It is only possible to set values of stored (as opposed to derived) attributes
3. The type of the value returned is the Java representation of the attribute. See Section 7.1.
4. Using Java == (double equals) for instance equality will not produce the right result.
5. Useful to determine if an instance returned by a Select is a seed.
6. Attribute_Name must be a local attribute of Behaviour_Name – i.e. defined in its ATTRIBUTES entry.
7. The results do not depend on the instance on which the method is invoked.
8. Example: this.selectInContext (“Account” , “Transfer” , “Source”) selects all Accounts for which Transfer[Source] is

in context, whereas this.selectInContext (“Account” , “Transfer”) selects all Accounts for which either
Transfer[Source] or Transfer[Target] is in context.

9. The state specifiers “@new” and “@any” may be used for the State parameter.
10. The type of the Value parameter must conform to the Java representation of the attribute . See Section 7.1.

10.5.3 Methods of EventValueAttribute

METHOD PARAMETERS DESCRIPTION N
O
T
E
S

ALLOWED
USAGE

(CALLBACK
POLICY RULES)

set* Value Sets this attribute to Value. 1 Attribute Handling

setRule “Rule_Name” Specifies the JavaScript rule
to be used to validate user
entered values for this
attribute. See Section 7.1.

 Attribute Handling

Notes
1. The type of the Value parameter must conform to the Java representation of the attribute . See Section 7.1.

10.5.4 Methods of EventReferenceAttribute

METHOD PARAMETERS DESCRIPTION N
O
T
E
S

ALLOWED
USAGE

(CALLBACK
POLICY RULES)

remove Instance Removes Instance from the
candidates list.

Attribute Handling

removeAll HashSet Removes from the candidates
list all the instances in
HashSet that are also in the
candidates list.

1 Attribute Handling

tag Instance Causes Instance to be shown
as the default by appearing
first in the select list of
candidates.

 Attribute Handling

untag Causes the list of candidates
to appear in standard order –
no specified first entry.

 Attribute Handling

Notes
1. The parameter must be set up as an instance of the class java.util.HashSet whose members are Instances.

ModelScope Version 2.0 Modellers’ Guide

© 2003, 2004 Metamaxim Ltd Version 15 Page 64 of 64

11 Instance File

ModelScope uses a text file (the Instances File) to provide persistency. This file is updated at the completion
of processing a user event.

Normally, it is not necessary to look at this file. However, it is sometimes a useful aid to checking that a
model is working correctly. In particular, the file shows the states of all behaviours, including derived states.

The file can also be edited. However, care must be taken not to destroy referential integrity if ModelScope
internal identifiers are changed or deleted.

Figure 67 shows an example of an Instances File. The circled items are ModelScope internal instance
identifiers.

 Figure 67

Metamaxim ModelScope Instances File written on Sun Aug 04 10:33:24 BST 2003

INSTANCE : 001 = 2
 BEHAVIOUR : Account = active
 Account Number : String = 001
 Owner : Customer = 1
 Balance : Currency = -10.00

INSTANCE : 002 = 4
 BEHAVIOUR : Account = active
 Account Number : String = 002
 Owner : Customer = 3
 Balance : Currency = 50.00

INSTANCE : 003 = 5
 BEHAVIOUR : Account = active
 Account Number : String = 003
 Owner : Customer = 3
 Balance : Currency = 0.00

INSTANCE : Roger Rabbit = 1
 BEHAVIOUR : Customer = registered
 Full Name : String = Roger Rabbit
 Address : String = The Warren

INSTANCE : Minnie Mouse = 3
 BEHAVIOUR : Customer = registered
 Full Name : String = Minnie Mouse
 Address : String = Behind the Fridge

